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Interacting or functionally related protein families tend to have
similar phylogenetic trees. Based on this observation, techniques
have been developed to predict interaction partners. The observed
degree of similarity between the phylogenetic trees of two pro-
teins is the result of many different factors besides the actual
interaction or functional relationship between them. Such factors
influence the performance of interaction predictions. One aspect
that can influence this similarity is related to the fact that a given
protein interacts with many others, and hence it must adapt to all
of them. Accordingly, the interaction or coadaptation signal within
its tree is a composite of the influence of all of the interactors. Here,
we introduce a new estimator of coevolution to overcome this and
other problems. Instead of relying on the individual value of tree
similarity between two proteins, we use the whole network of
similarities between all of the pairs of proteins within a genome to
reassess the similarity of that pair, thereby taking into account its
coevolutionary context. We show that this approach offers a
substantial improvement in interaction prediction performance,
providing a degree of accuracy/coverage comparable with, or in
some cases better than, that of experimental techniques. More-
over, important information on the structure, function, and evo-
lution of macromolecular complexes can be inferred with this
methodology.

coevolution � interaction � mirrortree

Coevolution is a well characterized process that takes place at
all biological levels, from ecosystems to molecules. Coevo-

lution between interacting protein families had been proposed
for some cases based on the qualitatively observed similarity of
their phylogenetic trees (1, 2). This tree similarity was later
quantified and statistically demonstrated to be related to protein
interactions in large datasets of interacting families (3, 4). This
‘‘mirrortree’’ approach has been followed by many authors, who
have developed different extensions of the method. Many of
these extensions have been aimed at correcting factors that
influence tree similarity but that are not related with the
interaction, thereby affecting the predictive performance of this
technique. For example, an obvious extension has been the
inclusion of information on the phylogeny of the organisms
involved to correct for the ‘‘background similarity’’ expected for
any pair of trees resulting from the underlying speciation events
(5, 6).

Still, there are many other factors affecting the relationship
between interactions and tree topology. Maybe one of the most
important is related to the fact that a protein is coevolving with
many interactors simultaneously. This would make it difficult to
separate the effect of each of them on the topology of the tree.
Nevertheless, all of the methods developed to date consider the
pairs as isolated when evaluating their coevolution. Moreover,
methods for predicting protein interactions based on tree sim-
ilarities are prone to errors from several sources (e.g., problems
in detecting orthologs, multiple sequence alignment errors, etc.).
The paradigm- and methodology-related limitations have re-
duced the potential application of protein-interaction prediction
based on coevolution. Here, we have introduced qualitative

changes to the paradigm by moving from the limited pairwise
observations toward a complete cellular ‘‘coevolutionary con-
text.’’ We propose use of the information contained in the whole
‘‘coevolutionary network’’ of an organism (the network contain-
ing all of the pairwise tree similarities) to gain information on the
‘‘coherence’’ or robustness of a given coevolutionary signal.

By using this coevolutionary context information, we pre-
dicted the interactome of Escherichia coli with a degree of
accuracy and coverage comparable with that of the high-
throughput experimental techniques. We evaluated the predic-
tive performance of this method in large datasets representing
different types of physical and functional relationships between
proteins. We also discuss in detail the predictions for some
particular systems, showing that this approach is able not only to
detect the interactions within these systems but also to provide
additional information on their substructure and functioning.

Results
Improving Coevolution-Based Prediction of Protein Interactions. To
assess the improvements attributable to the new methodology,
we used as our baseline the results of the original mirrortree
method (4) that take into account only pairs of interactions and
not the global coevolutionary landscape [see Network of Raw
Tree Similarities (Coevolutionary Network) in Methods]. The
accuracy of this method for the different test sets is shown in Fig.
1A. It was clear that this simple approach could capture part of
the coevolutionary signal related to protein interactions, as is
particularly evident for the manually curated EcoCyc complexes,
where a level of confirmation close to 40% was obtained for the
top 500 predictions.

When we placed side-by-side these results and those obtained
by correlating the coevolutionary profiles (see Calculation of the
Coherence of Evolutionary Similarity Based on The Whole Co-
evolutionary Network in Methods), we observed a drastic im-
provement up to the first 500 predictions, obtaining an accuracy
of 100% for the top 100 predictions when evaluated against
EcoCyc (Fig. 1B). If we went down the first 500 top predictions,
the accuracy (for EcoCyc) was similar to that of the original
mirrortree. This improvement at the top of the list was attrib-
utable to a dramatic reduction in the number of false positives
produced previously by the original mirrortree method. This
improvement was a direct consequence of using the evolutionary
information of the whole proteome for confirming the coevo-
lution of a given pair of proteins. The best accuracies were
obtained for the datasets related to manually annotated com-
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plexes, followed by metabolic pathways. These datasets were
among the more reliable ones.

A substantial improvement was obtained when the most
stringent partial correlation of each pair of proteins was used to
score that pair (level 1; see Methods and Fig. 1C). In this step,
a large proportion of the false positives introduced by the
‘‘broad’’ evolutionary trends are removed, such as those attrib-
utable to the speciation process (5). Indeed, the improvement
observed at this point was impressive (Fig. 1C), roughly doubling
the accuracy of the previous step for the first 1,000 predictions
(from 31% to 65% for manually curated complexes).

Finally, we focused on recovering those protein coevolution-
ary relationships that involve more than two proteins. We did
this by relaxing the partial correlation criteria considering the
nth most stringent partial coevolution for each protein pair
(steps 4 and 5 in Fig. 4). Fig. 1D shows the results for the 10th
level of partial correlation. These results were even slightly better
than those obtained for the most stringent level (previous point),
indicating that some valuable relationships are masked when
filtering for the influence of third proteins. The 100 top predic-
tions produced an accuracy of 93–96% with the datasets derived
from KEGG and EcoCyc (Fig. 1D). Globally, this 10th level
produced the best predictions (data not shown), although better
results could be obtained for particular proteins with different
specificities of partial correlation (depending on whether or not
they are involved in functionally related broad coevolutionary
trends).

Additional representations of the results for the EcoCyc
dataset by using receiver operator curves are described in the
supporting information (SI) Text and SI Fig. 5.

We also performed some tests with the yeast proteome. A
detailed description of the methodology, datasets, and results for
this organism are available in the SI Text. For the profile–profile
correlations (see Methods), the accuracies for these two organ-
isms were similar (SI Fig. 6B). However, when we considered the
partial correlations (see Methods), no improvement was ob-
tained for yeast (18% accuracy for the 2,000 top-scoring pairs in
the KEGG dataset), contrary to what occurred in E. coli (51%)
(Fig. 1D and SI Fig. 6D). This is probably attributable to factors
such as the difficulty in obtaining clean sets of orthologs and the
lower number of (eukaryotic) organisms used to build the align-
ments/trees. All of these factors led to a reduction in the number

of possible pairs to build the coevolutionary network and hence
in the choices for finding third proteins that could explain the
observed coevolution for a given pair. Additional results are
available in the SI Text.

Performance of the Different Sets of Protein Relationships. The
coevolutionary information seems to be differentially related to
the different types of protein associations (Fig. 1). Furthermore,
these differences are relatively consistent for the different steps
of our protocol. In all cases, coevolution seems to be strongly
related to the protein associations represented by the manually
curated complexes. These complexes are well studied, stable
macromolecular machines with a strong functional dependence,
and, in most cases, they are conserved between organisms. All
of these features make them particularly apt to display coevo-
lutionary behavior. Lower accuracies were obtained when com-
paring against datasets representing weaker or ‘‘human-
imposed’’ relationships (i.e., metabolic pathways). All of these
findings suggest that the strength of the functional/physical
association is directly related to the level of coevolution.

There is almost complete disagreement between our predic-
tions and high-throughput pull-down experiments. These exper-
iments were aimed at detecting stable protein complexes that
would strongly overlap with manually curated ones. To obtain
insight into the reasons for this disagreement, we evaluated the
‘‘accuracy’’ of the protein pairs derived from the high-
throughput set that were also predicted by our method by using
the EcoCyc complexes and KEGG pathways as ‘‘gold standards.’’
We compared this accuracy with that obtained for the high-
throughput pairs alone and for our predicted pairs alone. There
was little confirmation of the experimental high-throughput
pairs (�5% with EcoCyc complexes and �11% with KEGG
pathways; SI Fig. 7 A and B), which may reflect a large set of
previously unexpected stable interactions or, more probably, a
large proportion of false positives. In any case, when our method
for selecting a subset of these data was used, the agreement
increased up to �55% for complexes and �70% for pathways.
Although the agreement of this subset was lower than that
obtained by using predictions alone (SI Fig. 7 A and B), this must
be interpreted as the value of integrating experimental infor-
mation, because these ‘‘new’’ positive pairs were extracted from
predictions with lower scores (SI Fig. 7 C and D). This suggests
that there is room for improvement when combining these two
sources of information (experimental and computational).

Finally, the predictions evaluated against the pairs derived
from low-throughput experiments were also worse than expected
(Fig. 1), except perhaps for those derived from very restrictive
partial correlation criteria (Fig. 1C). This may be related to one
of the main limitations of the coevolution-based approaches. As
suggested previously (7), coevolution does not seem to occur (or
it occurs to a much lesser extent) between transiently interacting
proteins. This is probably related to the fact that the evolutionary
(coevolutionary) pressure for these pairs is not as strong because
of their nonpermanent nature. Even though they may be fun-
damental for the regulation of cellular processes, they are not as
mutually dependent as more stable interactions.

Interesting Examples of Coevolution Specificity. Some examples of
interaction networks predicted with this new methodology are
shown (Fig. 2), where the colors of the links in Fig. 2 represent
predicted pairs with the 1st, 5th, or 10th best partial correlation
value �0.6 (red, blue, and black, respectively). We can see how
different levels of coevolution specificity affected our predic-
tions. Very specific coevolution (not related with third proteins)
arose at the first level (no external influence allowed), and as we
went to higher levels, this specificity was relaxed as clusters of
coevolving proteins were detected.

One group of proteins that coevolve in a very tight way is that

Fig. 1. Confirmation of the predictions for different steps of the method and
for different interaction datasets. (A) Mirrortree. (B) Profile–profile correlation.
(C) Partial correlation, 1st level. (D) Partial correlation, 10th level. The x axes
representthenumberoftoppredictions (pairswithhighest scores),andtheyaxes
represent the confirmation according to the different datasets of protein inter-
actions and relationships.
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of the 12 proteins forming the NADH–quinone oxidoreductase
complex (Fig. 2 A). Three different structural and functional
modules have been described in this complex. The N module
oxidizes NADH, the Q module reduces ubiquinone or mena-
quinone, and the P module translocates the protons across the
membrane (8). Although no associations were detected at the
first level of specificity, more relaxed levels showed increasing
degrees of evolutionary dependence related to the biological
functioning of this complex. The progress of the partial corre-
lation values for different levels of specificity for the NuoF/
NuoH pair is compared with a negative case, two proteins that
do not interact physically or functionally, NudE/PepA (Fig. 3).
For the very first levels, both pairs had very similar values
(although at the first level the negative case had a slightly higher
value). However, after removing the effect of other cocomplexed
partners, the values for NuoF/NuoH rose dramatically, whereas
the negative case displayed a much milder increase. We found
that at a midlevel of specificity, all of the connections were
intramodular (six for the P and one for the N module; Fig. 2 A),
whereas at the 10th level (relaxed specificity), a high level of
coordinated evolution between all of the members of the com-
plex was observed (intermodule). The predictions for the mem-
bers of this complex up to level 10 did not contain any false
positives. It is important to note that only two members of the
complex were not detected with the thresholds defined above:

NuoB and NuoCD. NuoB shows significant relationships (P �
10�6) with NuoE, NuoF, NuoG, NuoH, NuoI, NuoJ, and NuoK
but with partial correlation values below the established thresh-
old (ranging from 0.43 to 0.55). Moreover, NuoB did not show
any other significant relationship. In the case of NuoCD, no
significant relationships were found regardless of the threshold.
This is because only 18 orthologs were detected for this protein
with the methodology used here. This low number of orthologs
hides the evolutionary signal for this sequence, making it more
difficult to detect its evolutionary dependences. Thus, this
method is not only able to relate most of the members of the
NADH–quinone oxidoreductase complex with high sensitivity
and specificity, but it also distinguished between highly specific
relationships (intramodule) and less specific broad ones (inter-
module), providing additional information on the detailed struc-
ture and functioning of the complex.

Another interesting example is the machinery for flagellar
assembly (Fig. 2B). For this very complex machine, we are able
to obtain predictions for 19 proteins that display a high degree
of connectivity among them. This case is particularly difficult
because of the large number of proteins (37 proteins according
to KEGG). This large number of proteins would suppose a level
of specificity less than ten, because we would expect to have to
remove evolutionary patterns related to this process. Further-
more, the large number of relationships increases the difficulty
of obtaining an accurate ranking of partial correlations. Even so,
we found that most of the linked proteins indeed participated in
this process, and only three (apparent) false positives and three
predictions involving unknown proteins were identified. The first
two false positives involve CheZ, a protein known to participate
in chemotaxis, a process that is related to the regulation of
flagellar rotation (9). CheZ has a very specific coevolutionary
signal with FliJ, one of three soluble components of the flagellar
export system and an association of intermediate specificity with
one of the other two, FilH. The other false positive was the �
subunit of the DNA polymerase III (HolB). Although replica-
tion is a completely different process, and there is insufficient
evidence to suggest a functional relationship between HolB and
FliJ, it is interesting to note that several studies have identified
a close regulatory relationship between the assembly of the
flagellum and the DNA replication in Caulobacter crescentus
(10). With regard to the unknown proteins, there is no infor-

Fig. 2. Examples of predicted clusters of related proteins. (A) Proteins
related to the NADH oxidoreductase complex. (B) Flagellar assembly proteins.
The link colors represent levels of coevolutionary specificity: 1st level (red), 5th
level (blue), and 10th level (black). The colors of the nodes represent those
belonging to the same complex/pathway. (Gray is used to represent unknown/
hypothetical proteins, and black is used to represent a false positive.) For the
NADH oxidoreductase example, the colors of the surrounding circles represent
different structural and functional modules of the complex. More examples
are shown in SI Fig. 8.

Fig. 3. Coevolutionary specifity. Different partial correlation specificity
levels for two protein pairs. Partial correlation values of different levels of
specificity for an unrelated pair of proteins (NudE–PepA, red line) and a
positive case involving two proteins, the NADH oxidoreductase complex
(NuoF–NuoH, green line).
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mation for two of them (YeiI and YbhP), whereas for the third,
YecS, there is indirect evidence linking it to FliY. Both proteins
seem to be part of a cysteine ABC transporter, and they are
predicted to be linked by other ‘‘context-based’’ computational
methods such as gene fusion, gene neighborhood, and gene
cooccurrence in STRING (11). Finally, there is a larger cluster
composed of eight highly connected proteins (all of them part of
the flagellum) that probably represents the ancestral core of the
machinery. This is consistent with the observation that if we
relaxed the specificity level up to 20, another five proteins would
become attached to this cluster without adding any further false
positives (FlgG, FlgI, FlgL, FliF, and FliM; data not shown). In
the SI Text, we discuss in detail the predictions for some other
complexes.

Discussion
Many features characterizing living systems can only be under-
stood by considering the complex network of relationships
between cellular components. Biological systems are the proto-
type of complex systems, where ‘‘the whole is more than the sum
of the parts’’ (12, 13).

The relationship between protein coevolution and interactions
has been repeatedly demonstrated by many authors (see the
Introduction). Hypotheses for explaining such a relationship
include the similar evolutionary pressure and the mutual coad-
aptation of interacting proteins. The coadaptation hypothesis is
a very challenging one, and there are results in favor and against
it (7, 14). It is important to keep in mind that the practical utility
of the method is totally independent of this hypothesis to be true
or not, and it only depends on the demonstrated relationship
between tree similarity and interaction. It is reasonable to
consider coevolutions resulting from coadaptations at the mo-
lecular level as more specific, involving pairs of proteins (or very
small groups), and to consider coevolutions not resulting from
specific coadaptations (but from similar evolutionary pressures)
as more general, involving large macromolecular complexes and
groups of proteins (pathways, etc.). In this context, we think that
the method presented here, which is able to separate specific
from broad coevolutions, could help in clarifying this issue. In
any case, coadaptation is interesting as a working hypothesis, and
it drove some of the improvements of the method.

The full network of molecular interactions in a cell can be seen
as a coevolving system in which the individual properties of the
components depend on the interactions with others. The com-
plex network of coevolutionary relationships between proteins
cannot be easily split into the individual pairwise coevolutions
because the fact that proteins has to adapt to many different
interactors makes these pairwise coevolutions highly dependent
to each other. Therefore, it makes sense to study the properties
of coevolution in the complete system.

The idea of coevolution of the entire interacting system can be
implemented and tested in various possible ways. The method we
propose here falls within the context of those based on the
comparison of protein family phylogenetic trees (mirrortree) for
the prediction of interactions. Our approach is completed in two
steps: in the first, we evaluated the similarity of the coevolu-
tionary patterns of the two proteins (patterns of coevolution with
all of the other available family trees); and in the second step, we
assessed the influence of other proteins in the coevolution of a
given pair by calculating the corresponding partial correlation of
their family trees.

The results presented here demonstrate that the predictions of
protein interactions are clearly better when the ‘‘evolutionary
context’’ is taken into account. The inclusion of this context
information corrects in a natural way many factors that affect the
performance of the method, including the background similarity
attributable to the underlying speciation process addressed
previously by other authors (5, 6). We observe that the predic-

tions obtained with this new approach are more closely related
with the relationships represented by EcoCyc complexes and
metabolic pathways (KEGG and EcoCyc). Conversely, they
appear to be less closely related to the interactions detected by
high-throughput techniques and the low-throughput ones anno-
tated in curated databases. The low agreement with the high-
throughput data could be explained by the poor quality of these
data. Furthermore, we show that although significant improve-
ments can be made by discarding nonspecific coevolutions,
further improvements can be obtained by establishing a less
stringent level of specificity. Actually, our results show that on
average, better results are obtained for the 10th level of partial
correlation. This can be easily explained by the fact that some
nonspecific coevolutions are important. In some complexes, all
of the proteins coevolve with one another. Rather than an
artifact, this nonspecific global coevolution is intrinsic to their
function, and, hence, it should not be corrected. This highlights
the potential value of detecting the optimal level of specificity for
each system.

Together with evaluating the implementation in global terms
of prediction accuracy, we show how the analysis of the coevo-
lutionary relationships can be used to explore the functional
topology and evolution of macromolecular complexes. This was
clearly demonstrated for a number of cases, including the
NADH–dehydrogenase complex. Hence, this method can be
used not only for predicting interactions with high confidence
but also to gain insight into the function and structure of the
macromolecular complexes by using sequence information
alone.

There are other methods for predicting protein interactions
and functional relationships that use genomic and sequence
features intuitively related with protein interactions. For a recent
review, see ref. 15. Nevertheless, all of these methods consider
a given pair of proteins as totally independent from the others.
The method presented here is the first that uses information on
the whole proteome for assessing the possible interaction of two
proteins.

Our approach requires a minimum amount of evolutionary
information about a given protein from a nonredundant set of
organisms to build congruent protein alignments of related
species. It is conceivable that the unceasing increase in the
number of genomes sequenced will substantially increase the
possibilities of applying methods based on coevolution models,
such as the one presented in this work.

Methods
The ContextMirror method is depicted in Fig. 4. An initial coevolutionary
network containing raw tree similarities for all protein pairs is calculated. An
optimized measure of coevolution between two given proteins is then ob-
tained by comparing their patterns of coevolution with all of the others.
Finally, the influence of third proteins on the coevolution of a given pair is
evaluated.

Network of Raw Tree Similarities (Coevolutionary Network). The starting point
of the method is the generation of the coevolutionary network that contains
all of the raw tree similarities for all of the possible pairs of proteins within the
E. coli genome. The protocol for calculating these tree similarities is similar to
that described previously (5). The first step is the generation of alignments of
orthologs for all of the proteins in the E. coli genome. Orthologs for all of the
proteins from E. coli are detected in a set of 116 fully sequenced genomes by
using the standard BLAST ‘‘best bidirectional hit’’ method, with a cutoff P
value of 10�5 and requiring an alignment of at least 70% of the protein length.
These 116 genomes were obtained from the set of all fully sequenced pro-
karyotic genomes (218 in February 2005) by taking only one representative
from each clade at the first level of the National Center for Biotechnology
Information taxonomic tree (the one with the largest genome), which means
taking only one strain for each species. The sequences within these ortholog
sets were aligned with MUSCLE (16), and phylogenetic trees were obtained
from these alignments with the ‘‘neighbor-joining’’ (NJ) algorithm imple-
mented in ClustalW (17). The mirrortree method is based on the comparison
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of protein distance matrices rather than of the phylogenetic trees themselves.
A distance matrix for each family (set of orthologs) is obtained from the
phylogenetic tree described above by summing the lengths of the branches
separating each pair of proteins.

Finally, the tree similarity between two families is calculated as the
correlation between their distance matrices. Only the distances between
species included in the multiple sequence alignment of both families can be
used for this calculation. A minimum of 15 common species are required to
test a pair of families (105 distance values). The mirrortree score between
A and B (rAB) is calculated as in ref. 5. Significant correlation values are
selected based on significance cutoffs of 10�5 (tabulated P values). In this
step, we obtain significant correlation values for 1,089,362 pairs compris-
ing 2,077 proteins.

Calculation of the Coherence of Evolutionary Similarity Based on the Whole
Coevolutionary Network. Despite having been repeatedly shown to detect
protein interactions with reasonable accuracy, these raw tree similarities
still display some degree of noise that produces many false positives and
negatives (see the Introduction and references therein). Part of this noise
may be attributable to the interdependence between these similarities not
taken into account so far, although it may also be related to intrinsic
methodological limitations, such as the automatic nature and the assump-
tions of the method (orthology detection method, NJ tree, etc.). We try to
reduce these sources of noise by evaluating the coherence of the coevo-
lutionary signals by using all of the information in the coevolutionary
network. The idea is based on a ‘‘conservative witnesses consensus opin-
ion’’ principle that could be phrased as, ‘‘Because I cannot believe you, I will
ask all those that know you.’’ Imagine how we could ensure that two
people who claim to know each other are not lying. If we investigate their
friends, and we find that they share many of them, we have additional
indirect proof of their friendship. In this case, we ‘‘believe’’ the coevolu-
tionary signal between two families only if their patterns of coevolution
with all of the others are also similar. That is, if their coevolutionary
contexts are also similar. This rationale is implemented in a very simple way.
We represent the correlation values of the significant pairs obtained in the
previous step (P � 10�5) in a matrix. A row/column in this matrix (correla-
tion vector) contains the correlation values for a given protein with all of
the others. We then calculate the Pearson’s correlation for every pair
of correlation vectors (Fig. 4). Thus, the correlations of protein A with all of
the other proteins (rAi) and those of protein B (rBi), both calculated as

above, were used to calculate a new correlation coefficient between these
two proteins (r�AB):

r�AB �

�
i�1

N

�rAi � rAi� � �rBi � rBi�

��
i�1

N

�rAi � rAi�
2 ���

i�1

N

�rBi � rBi�
2

,

where N is the number of proteins in the genome for which the correlation
values (see above) with both A and B could be calculated. In this way, we
reassess the evolutionary similarity between A and B by evaluating the coher-
ence of their coevolution with all of the other proteins. In other words, we
consider that two proteins coevolve not only if their trees are similar but also
if their coevolutionary behaviors with respect to all of the other proteins are
also similar. This additional restriction allows us to optimize the measure of
coevolution. In this step, we obtain significant correlations (P � 10�5) for
574,997 pairs comprising 1,942 proteins.

Assessment of the Influence of Third Proteins on the Coevolution of a Given Pair.
The fact that the evolution of two proteins is coordinated, either when
measured directly or by evolutionary context (see above), does not ensure that
this coevolution is ‘‘specific’’ or ‘‘particular’’ to these proteins. Rather, it may
be attributable to a ‘‘general’’ evolutionary tendency involving more proteins,
which is reflected in similar pairwise coevolution for all of them. These broad
coevolutions can be very informative in some cases, i.e., macromolecular
complexes with constituents that are subject to similar evolutionary pressures.
However, often they are far from reflecting protein interactions or functional
relationships [i.e., similar coevolution resulting from the speciation process,
ribosomal proteins, etc. (5, 6)]. In contrast, specific coevolution (not attribut-
able to third proteins) is intuitively more closely related with functional
relationships.

To separate these two types of coevolution, we calculated the partial
correlation coefficient between every pair of proteins given each one of the
others. The partial correlation between proteins A and B given protein N is
calculated as:

Fig. 4. Schema of the ContextMirror method. An initial coevolutionary network containing raw tree similarities for all protein pairs is calculated (step 1). The
similarity between coevolutionary patterns (vectors containing all of the tree similarities) is calculated for all pairs of proteins (step 2). The specificity of the
coevolution between two proteins is evaluated by calculating their partial correlation given all of the others (step 3). The list of partial correlations for each pair
of proteins is sorted (step 4). Levels of partial correlation specificity for all of the protein pairs are obtained and ranked (step 5). In all of the steps, only pair
relationships with a P value of �10�5 were considered.
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��AB.N �
r�AB � r�AN� r�BN

��1 � r�AN
2 � � �1 � r�BN

2 �
,

where ��AB.N is the partial correlation between the coevolutionary profiles of
proteins A and B, holding constant the coevolutionary profile of protein N,
and r�AB, r�AN, and r�BN are the Pearson’s correlations between the coevolu-
tionary profiles of A and B, A and N, and B and N, respectively (see above). For
this work, only partial correlations with P values of �10�6 were considered
significant.

Therefore, for each pair of proteins (A and B), we produce an ascending-
sorted list of partial correlations with all other proteins. Going down this list
(from low to high partial correlations), we move from highly specific coevo-
lutions (first levels) to more relaxed coevolutions that can be partially ex-
plained by third proteins. This specificity relax procedure allows to retrieve
those coevolutionary patterns shared by small groups of proteins (i.e., protein
complexes), independent of the rest of the proteome evolution.

The sorted lists in Fig. 4 illustrate the final set of results that we obtained.
Each list represents a pair of proteins, and each row represents a level of partial
correlation. From these lists, we can extract the number of third proteins
influencing our pair for a given partial correlation cutoff, which we call the
‘‘partial correlation level.’’ With the P value threshold mentioned above, we
obtain significant partial correlations for 17,256 pairs in the 10th level (com-
prising 1,390 proteins).

Test Sets. We used the well studied model organism E. coli to evaluate the new
method, to compare it with existing methodologies, and to assess whether it
could give additional information on the functioning of protein complexes. A
variety of different datasets of protein interaction and relationship with
different characteristics were used for this purpose. Table 1 shows the number
of interactions and proteins included in each test set. In each dataset, the set
of negative pairs is constructed by forming all of the possible pairs among all

of the proteins involved in the positive (interacting) pairs. We also performed
some tests for yeast, which are described in the SI Text.
Low-throughput physical interactions. Binary physical interactions for E. coli were
obtained from DIP (18), BIND (19), MINT (20), and Intact (21). The final set
contains 3,965 interactions among 812 proteins. We considered only interac-
tions coming from manually curated databases and low-throughput experi-
ments, resulting in a small but highly reliable set of physical interactions.
Protein complexes. To test the accuracy of our method in predicting pairs of
proteins belonging to the same macromolecular complex, we used the set
of well characterized complexes available at EcoCyc (22). EcoCyc includes
only manually curated data, and it is an extremely reliable source of
functional information for E. coli. We retrieved 245 complexes that involve
591 proteins, which we translated into 1,354 binary relationships (all
against all). Furthermore, we used protein complexes coming from high-
throughput pull-down experiments (23, 24), although these data were less
reliable than the previous set.
Metabolic pathways. We also compared our predictions with a relatively com-
plete set of functional relationships given by copresence of proteins in the
same metabolic pathways. We retrieved all of the pathways from both EcoCyc
and KEGG (25) and translated them into binary functional interactions by
considering a link between any pair of proteins belonging to same pathway.
This results in a more relaxed type of functional relationship, not always
related to a direct physical interaction.

The SI Text contains information on the availability of the software and on
the predictions.
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Table 1. Composition of the protein interaction datasets used

LT experiments HT experiments
EcoCyc

complexes
KEGG

pathways
EcoCyc

pathways

Pairs, n 3,965 53,002 1,354 78,532 4,491
Proteins, n 812 2,842 591 1,339 719

LT, low throughput; HT, high throughput.
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